
-AIM 615 SOFTWARE IMPLEMENTED FAULT IMARTIN- AN FtPEm- 17
(U) CARNEGIE-MELLON UNIV PITTS8URGN PA DEPT OF COMPUTER
SCIENCE E WI CZECK ET AL DEC 87 CHU-SS-87-i81

UNCLASSIFIED RFWdAL-TR-7-1164 F3615-84-K-152 F/G 12/5 6

EhEEEEmoEEoiE
EohEEEEEEEohhE

..:

4"

'"

':'"

A

.5.

St

jjl1. h

PHOTOGRAPH THIS SHEET

* Lf

LEVEL INVENTORY

00 z

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT

I lIt I . W

I, \NNU' ! 1)

IS.ill I\ION

ki l l I O IAS .\\ xIl \II lli (O)l)lS

A\\\II N) OR SPFCIAL

DATE ACCESSIONED

;r)

O I)STRIBUTON STAMP

____DATE RETURNED

.3 2 05 104

DATL RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RE fURN TO DTIC-DDAC

DTIC FO)M 70A DOCUMENT PROCESSING SHEET STPREVIOUS EXDITION MAY BE USED UNT1
DEC 83

AFWAL-TR-87-1164

LC)
TI-

to SOFTWARE IMPLEMENTED FAULT INSERTION: AN FTMP EXAMPLE

00 Edward W. Czeck, Zary Z. Segall and Daniel P. Siewiorek

i Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213-3890

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

4

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

4

[.v.

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any

. way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)

and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIR-A M. HOPPER RICHARD C. JONES

Project Enzineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

0.

Unclassified
SECURiTY CLASSIFICA-ION Or THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
_____________________________OMB__ No00408

? a REPORT SECjR,TY CL.ASS;FCAT.O% lb RESTRiCTIVE MARKINGS
Unclassified

2a SECURiTY CLASSiFCAT'ON AUTH-ORITY 3 D;STRiBuTON /AVAILABILITY OF REPORT

2b DECLASS!IiCA~iON DOWNGRADING SCHEDULJE Approved for public release; distribution
% is unlimited.

4 PERFORMING ORGAN ZAtON REPORT NuMFVBER('S) 5 MONITO7RING ORGAN!ZATiON REPORT NUMBER(S)

AFWAL-TR-87-1 164
) CMU-CS-87-101

6a NAME OF PERORMAG ORGAN;ZATiON 6t) OFFICE SYMBOL 7a NAME OF MONiTOR!NG ORGANIZATION

Carnegie-Mellon University (fapcal) Air Force Wright Aeronautical LaboratoriesJ___________ AFWAL /AAAT- 3
6c, ADDRESS (City, State, and ZIP Code) 7b ADDRESS (Cit, State, and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543
Pittsburgh PA 15213-3890

8a NAVE OP :,,,D NC SPO)NSOR,NG J86 OFFICE S"MBOL 9 PROCRE'1ENT NS7R.jMENT IDENTJiCA'iON NUjMBER

74ANA~O (If applicable) F336 15-84-K-i 520

5c. ADDRESS (City, State. and ZIP Code) 10 SOuRCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO.

61101E 4976 00 01
11 TITLE (include Security Class,fication)

Software Implemented Fault Insertion: An FTMP Example
12 PERSONAL AUTHOR(,S)

Edward W. Czeck, Zary Z. Segall, Daniel P. Siewiorek
13a. TYPE OF REPORT 13b TIME COVERED j1.DATE OF REPORT (Year, Month, Day)11 PAGE COUNT

Interim IFROM To _ 11 1987 December 1 35
16. SUPPLEMEN-ARY NOTAnION

17. COSAT' CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

I FIELD GROUP
SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

'Vlliz roport IprceIets a model for fault insertion through softwavre, describes its

im plenen titlor onl a fault tolerant comnput er, FTMP, presents a summary of fault detection,

Henti et oiaand remn fiu rat ion data collected With softwvare Implemented fault Insertion and

cornr: e.~thc reir, 1 jt ; to i rd wa C fault i n_ ert ion data.

'Thle ;oftw:i re falt in!,ertiOnl rnC.dcl 'assumelS faults manife_ ;t tci doata errors at the output of a

1:4k Thle I II peleetation rof the software fault insertion model on FT1Nf113 allox,-s inserted faults

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E UNCLASSIFIED/UNLIMITED 0 SAME AS RPT, 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22 T E11 (g raCd)2XF M2
Chahira M. Hopper (r

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

UNCLASSIFIED

Block 19 (Continued)

to cuIuI]' ;*e:111;t.- III tilt' J2:&Q5SCP j LI: pah jroce.,ssor ('out I l pf':] I! it,1 :I~I :Ir \~CI

4 ~ ~ ~ ~ h t' SltC icv~vk- (I'MeCtioln tim~e to lbe a lulictlii of tile of ;m '-I'ihd

rrs lIfore cLottwmrio iset-ted faults irnmediately exerci.-e tlt- error dJe(t lIon

n 'Ill~us. 1lult id.1cLoon time for FIMP is a fttict ion of the imnbcr of modujle> t,-

w 1the vrror3 I-b attributed. F mithe data, hardware inserted faults nmnilfst to e nror

)) uf ni]1-a t Iue to uillqe moduiles, whereas sinigle software iniserted fta uts wvere aIt trilhued to

nti~i I l u~p~ii nthe(non-u]ique mapping bet weenl htardwa me timd so:waei muert ed

I::h11ite. fiau]oil raI . ITTICS Were cornparable foi both bard witre al..t(d sft warc i nert cr

.- u~11O121 tnS v lhu Oftware fault insertior. does niot mapq directly to hardwatre faullt

!,t Lo!, cXporiucuts1, inuiezite -oftwale fault, ifnsertion a a flaihts to cliarneteriacT the fault

an Ii;; c~ubldesof a) system inI errior detection, ideiitificatioti, anid crr-or recovcrV.

Table of Contents

Abstract 1

1. Introduction 3

2. FTMP Architecture 5

2.1 General Overview 5
2.2 Fault Detection 5

2.3 Fault Identification 6
2.4 System Reconfiguration 6

3. Software Implemented Fault Insertion 9

3.1 Fault Tolerant System Model 9
3.2 Software Fault Insertion Task Model 10

3.3 Software Fault Insertion Realization 11
3.3.1 Location and Generation of Faults 11
3.3.2 Timing of Faults 12
3.3.3 Duration of Faults 12
3.3.4 Workload 12

3.3.5 Recovery Mechanism 13
3.4 Experimental Environment 13

3.4.1 Parameters 13
3.4.2 Experimental Execution 14
3.4.3 Data Analysis 14

.4 4. Experiments 15

4.1 Summary of Dtaper's Fault Insertion Data 15
4.2 Fault Detection Time 16

4.3 Fault Identification Time 18
4.-4 Fault Recovery Time 23

5. Conclusions 27

References 29

V

'O°

List of Figures

Figure 2-1: Time Line of Error Detection, Identification and Recovery 6
Figure 3-1: Fault Tolerant System Model 9
Figure 3-2: Computational Task Model 10
Figure 3-3: Lower Rate Task Execution Model 10
Figure 4-1: Possible Fault Mapping Between Hardware and Software Inserted Faults 16
Figure 4-2: Error Detection Time as a Function of Insertion Time 18
Figure 4-3: Fault Detection Time for Software Inserted Faults 19
Figure 4-4: Draper's Hardware Inserted Fault Detection Time 20

Figure 4-5: Fault Identification Time for Software Inserted Faults 21

Figure 4-6: Draper's Fault Identification Time 22
Figure 4-7: Fault Recovery Time for Software Inserted Faults 24
Figure 4-8: Draper's Fault Recovery Time 25

,

Vi

@4s

Z [4

Abstract 1

Abstract

This report presents a model for fault insertion through software, describes its

implementation on a fault tolerant computer, FTMP, presents a summary of fault detection.

identifications, and reconfiguration data collected with software implemented fault insertion and

compares the results to hardware fault insertion data.

The software fault insertion model assumes faults manifest to data errors at the output of a

task. The implementation of the software fault insertion model on FTMP allows inserted faults

to emulate faults in the processor data path, processor control path, system memory, and system

transmit bus.

The experimental results showed detection time to be a function of time of insertion and

system workload. For the fault detection time there was no correlation between software inserted

faults, and hardware inserted faults; this is because hardware inserted faults must manifest to

errors before detection, whereas software inserted faults immediately exercise the error detection

mechanisms, Fault identification time for FTMP is a function of the number of modules to

which the errors can .be attributed. From the data, hardware inserted faults manifest to error

patterns attributed to unique modules, whereas single software inserted faults were attributed to

multiple sources, thus exposing the non-unique mapping between hardware and software inserted

faults. Fault reconfiguration times were comparable for both hardware and software inserted

faults.

In summary, although software fault insertion does not map directly to hardware fault

b a. insertion, experiments indicate software fault insertion as a means to characterize the fault

handling capabilities of a system in error detection, identification, and error recovery.

'0

.N

04.;

F,,.

Introduction 3

1. Introduction

Validation procedures, such as those proposed in [NASA 79a, NASA 79bi include steps to

characterize and evaluate the behavior of a syst-m under faulty conditions. The means for these

evaluations include the following:

1. Computer Simulation: Computer simulation evaluates the manifestation of faults
and the system's response. The simulation models range from the Processor-Memory-
Switch level through the Instruction Set Processor level, the Register Transfer level,
the gate level, and to the device level. The drawbacks to simulation are the high cost
of model development, computational needs, and the difficulty in model validation.

2. Physical Fault Insertion: Physical fault insertion places faults in the hardware of a
realized system. The advantages over computer simulation include speed and fidelity
to actual system faults. The drawbacks to this method are two fold. First faults
insertion requires physical manipulation of components, a time consuming effort.
Second the faults are limited to pin level insertion. As realizations moves from
SSI/MSI to VLSI, the fault insertion level moves from gate level to system level.

This paper discusses Software Implemented Fault Insertion, in which hardware or physical

faults are emulated by modifying program data or control. The motivations for software fault

insertion include speed and automation advantages. In addition software inserted faults are

repeatable within a system and across architectural and implementation boundaries. Finally, tile

gap between pin level fault insertion in VLSI and software fault insertion is narrowing and may

be approaching equivalence.

The literature abounds with prior work demonstrating the benefits of fault insertion and the

feasibility of software fault insertion at the architectural or bus level; a sampling of this prior

work includes:

• The FTMP evaluation used pin level (gate level) stuck-at or inverted permanent
e: faults. Observations noted in [Draper 83a] include the difficultly caused by incorrect

functioning of the test module with the test equipment connected and damage to
"CMOS circuitry caused by incorrect handling. From the fault insertion experiments,

they were able to evaluate the fault detection, isolation, and recovery times. Results
also showed preliminary but inconclusive data on the fault coverage of FTMP. This

* experiment demonstrates the value of using fault insertion for fault tolerant system
evaluation.

* [Schuette, et al. 86] inserted transient or soft faults in a MC68000 to evaluate
software triple modular redundancy and a signature instruction stream monitor. The

MC68000 realization did not allow gate level fault insertion, hence faults were

:'-Int roduct ion

inserted on the address, data, and control bus lines. This experiment shows fault
insertion at the bus level can be used to evaluate fault tolerant techniques.

" The Sperry UNIVAC 1100/60 'Boone et al. 80i has a built-in fault insertion
capability to verify fault detection, isolation, and recovery mechanisms. This
capability is activated during system idle time and can insert faults in the processor.
memory, and I/O unit. The UNIVAC 1100/60 system shows fault tolerant
mechanisms can be verified using software control at the system level.

, Yang et al, 85i inserted faults into the iAPX 432 to evaluate software implemented
triple modular redundancy. Faults were inserted by altering bits in the program or
data areas of memory using the debugger. The experiment shows fault insertion may
be accomplished by altering bits in the memory.

'This paper is divided into five sections. The second section gives an overview of the FTMP

architecture with emphasis on the fault-handling mechanisms. Section 3 describes a model for a

fault tolerant system, a model for fault insertion at the architectural level, and the

implementation of this model on FTMP. Section 4 presents data from software fault insertion

experiments and provides a comparison, where applicable, to similar hardware fault insertion

experiments. The last section concludes the paper with an evaluation of software fault insertion

techniques

I,'

'p

-- op

".5qW

FTVP Architect ur

FT MP Architecture

2. FTMP Architecture

This section presents an architectural description of FTMP, the target machine for the

software implemented fault insertion. Four subsections include a general overview, followed by a

detailed description of fault detection, fault isolation, and fault recovery mechanisms

2.1 General Overview

The Fault-Tolerant Multiprocessor, FTMP, is a hardware redundant multiprocessor

designed for ultrareliable avionics environments jHopkins et al. 78. Draper 83b. Draper 83c

The architecture, as seen by the programmer, consists of three virtual processors with local

memory, connected via a common bus to global memory and 1 0 ports. Reliability is attained

through hardware redundancy. Each virtual processor consists of a processor triad. The

memory and buses are also triplicated. Spare processors, memories and buses shadow (i.e.

execute the same code as) the active units, but do not participate in voting. Each triad executes

synchronously and a hardware vote occurs during data transfers. The voting is performed by

each receiving unit fiona data transferred over independent buses.

The bus structure consists, of four sets of serial buses each quintuply redundant of which

three are active at any given time. The buses are: the Poll Bus which is the bus arbiter: the

Transmit Bus which carries addresses and data information from the processor; the Recei.'e Bus

which carries data from global memory or 1/0 ports to the processors, and the Clock Bus, which

carries clock signals to each processor to maintain system synchronization.

FTMP employs a realtime operating system with a basic dispatch period of 40 milliseconds,

referred to as Rate-4. There are two lower rate groups, Rate-3 with a period of 80 milliseconds.

and Rate-1 with a period of 320 milliseconds. Lower rate tasks include application tasks and

also system tasks such as the system configuration controller (SCC), a memory checker, status

display and self tests.

2.2 Fault Detection
The fault detection mechanism for FTMP employs hardware voters residing at. the receivers

of each bus set. Disagreements at the voters set error latches, associated with each individual

lbus line. SCC, running as a Rate-1 task, reads the error latches to check for errors and

7I

- ., .

6 FTNIP Architectur,

potentially faulty units. If an error is detected, the time of the error is stored and the fault

identification routine is called. A time line of the events occurring in fault detection.

identification, and reconfiguration is shown in Figure 2-1.

Fault Error Error Faulty SystemU nitSytm

Occurs Occurs Detected Identified Reconfiguration

Fault Detection Time
Identification Reconfiguration

Fault Error Detection Time Time
Latency La- ncy

Figure 2-1: Time Line of Error Detection, Identification and Recovery

2.3 Fault Identification

The goal of fault identification is to determine from the error latch information which unit

caused the error. Since an error on one bus may be attributed to multiple sources (each unit

- enabled on the bus), the general procedure of the fault identification routi.nes is:

1 Determine the possible sources of the faults from the error latch infcrmation. If there
is more than one source, the bus assignments are switched and the identification
routine waits a Rate-1 frame for another error to occur.

2. If another eiror occurs, its possible sources are identified and intersected with the
previous possible sources. If the new set is not unique, this step is repeated after
switching bus assignment again. If an error does not occur, a transient fault analysis
routine assigns demerits to all possible sources.

The fault identification routine runs as part of SCC hence the identification time will be a

function of the number of passes needed to identify the fault.

2.4 System Reconfiguration

The system reconfiguration procedure entails removal of faulty units either by swapping

with a spare unit or by graceful degradation. These procedures are described as follows:

1. If there is a spare unit (Processor, Memory, or Bus) and it is shadowing the faulty
unit, the bus assignments are changed to bring the spare unit active and the failed
unit inactive.

2. If the spare processor or memory is shadowing a triad other than the one containing
the faulty unit, the spare is first brought to shadow the triad, and then the spare and
failed unit are swapped.

•,.i".-%,•'" '"". ,'.,,.,' ",£..".% ,'a,"" ., ,,,'v . d -""'.." ' ""'O~"'" ' ''. ". . .->K-- -----

FTMP Architecture

3. Finally if there are no spare processors, the triad is retired with its good processors
assigned as spares. When memories or buses fail without spares, the triad reduces to
a duplex.

The Rate-4 dispatcher executes the reconfiguration commands from the information

supplied by the fault identification routine. The error reconfiguration time is defined as the time

from the fault identification to the execution of the reconfiguration commands.

a

4,.

4d,

-.

'
4

.4,.

,:.

Implementatioll

3. Software Implemented Fault Insertion

This section describes a model for a fault tolerant system, and a model for software

implemented fault insertion for a realtime operating system. The realization of the software

fault insertion is presented on the example system, FTMP.

3.1 Fault Tolerant System Model

Fault tolerant systems generally use either hardware or time redundancy to achieve

reliability. Under each of these schemes, there are confinement regions (hardware or time) which

localize the corruption caused by a fault Associated with the region. usually at the boundary, is

an error detection and isolation mechanism (ED[) which limits fault propagation. The ED[also

generates a status showing the condition of the region or system. Figure 3-1 presents a system

model, based on fault confinement regions. where the regions are processors, P. memories. NI.

and 1 0 units, interconnected via buses through the EDI interface.

P1 Pn Nil Mn 1O 1 0

EDI EDI EDI EDI EDI EDI

Figure 3-1: Fault Tolerant System Model

0The goal of software implemented fault insertion is to force the system to appear faulty by

exercising one or more of the ED[interfaces by one of the following means:

1. Immediate activation where the EDI is exercised by an error at the boundary of a
confinement region, or

O 2. Latent activation where faults are seeded within the confinement regions.

A comparison between software fault insertion and hardware fault insertion includes:

e The goal of both fault insertion schemes is to exercise and evaluate the fault-handling

mechanisms of the system.
* Software faults may be better in triggering a specific error, which is difficult to

generate or reproduce with physical fault insertion.

0M
-J.

10 Implementation

. Physical fault insertion may be more analogous to actual faults generated in the

svstem.

3.2 Software Fault Insertion Task Model

A model for a computational task is shown in Figure 3-2a. Data (sensors) are read at tLhe

start of the task, operations are performed on the data, and the results are written (to

actuators). A fault occurring in the task would manifest to an error in the output of the results.

These errors include incorrect data, no data, or late data. Hence faults in the task could be

modeled as an error in the output part of the task, Figure 3-2b. Realtime execution could be

modeled as a series of computational tasks with the dispatcher executing between the tasks as

shown in Figure 3-2c. Adjusting the task model to fit the multiple execution rates of FTMP, let

L be a lower rate task, where L is all the non Rate-4 tasks I concatenated together to form a

single task. The L task executes at the end of the Rate-4 tasks and is interrupted by the start of
the next Rate-- frame, Figure 3-3; thus, the amount of execution time per Rate-4 frame for the

L task depends on the Rate-4 frame size and the execution times of the task and dispatcher.

Faulty
Input jComputations Output Input Computations O

__._._ __ __ O u tpu t

(a) (b)

SD In Dis-n Comp Out Dis-
patcher patcherah pat~cer prce

-q (c)

Figure 3-2: Computational Task Model

Rate-4 Frame

D Task R41 D Task LO D sk R-t D Task Ll D

%Figure 3-3: Lower Rate Task Execution Model

'rhe lower rate tasks include a clock update, System Configuration Controller (SCC), memory checker,
and status display which execute at 3.125 Hz, one-eighth of the Rate-4 tasks.

N1.' ..p ., ,:- ,.: ¢ W ,

Implementation 1

3.3 Software Fault Insertion Realization

The abilities of software implemented fault insertion or of any fault insertion in general are

the following:

- Location of Fault: Insertion of faults should be able to model true faults which can
occur throughout the system hardware.

* Timing of Faults: A fault may occur throughout any execution task of the system; a
fault insertion environment should allow similar conditions.

* Duration of Faults: Real faults are classified as either transient, intermittent, or
- permanent Siewiorek and Swarz 821; the fault insertion should allow the duration of

inserted faults to vary accordingly.

The realization of the software fault insertion is unfortunately limited by the controllability of

hardware in FTMP.

3.3.1 Location and Generation of Faults

The fault insertion environment must be able to insert or emulate faults in different

locations. The software fault insertion environment allows faults in four regions: these regions

%- and the means which the faults are inserted are described as follows:

,e Processor Data Path Faults: Faults occurring in the data path may manifest to a
number of different error types. These include transmission of incorrect data, no data
or late data. The software fault insertion environment assumes processor data path
faults manifest to incorrect data being transmitted by the processor, causing an error
on the transmit bus assigned to the processor. The incorrect data is a single word,
and the processor state remains good after the transmission of the bad data.

* Processor Control Path Faults: Faults within the control path may manifest to
many different error types. These include no data transmitted, early or late data
transmitted, or incorrect data transmitted. The software fault insertion environment

V: emulates faults within this region by having the processor execute an infinite loop,
resulting in no transmission of data. This causes errors on two of the buses to which
the processor is assigned: the poll bus because the processor never requests the bus,

* and the transmit bus because no data is transmitted.

- System Bus Faults: Faults on a bus may be attributed to many sources, such as

'.z noise or a unit transmitting out of protocol. Software fault insertion emulates bus
faults by having a processor transmit bad data on a specific bus, although the

O, processors are generating the errors, the errors map to a particular bus.

e Global Memory Faults: Memory faults may be attributed to decaying bits, stuck-at
bits, or incorrect address decoding. Memory faults are emulated by writing bad data
into one memory module of a triad, and then performing a read of the location.

0M

12 Implenentat ion

A few comments on the fault insertion are in order. First all inserted faults cause an

immediate error; there is no latency between insertion and error generation. Second. the faults

are transient and cause no change in processor state or corruption of data, except for the control

path fault. Third, the present software implemented fault insertion environment does not

exclude the later addition of latent faults. For example, local or global memory can be corrupted

without an immediate read, then the detection time, the time from the change in data (fault) to

the error can be measured.

3.3.2 Timing of Faults

Faults may occur at any time within the execution of a program. The model assumes faults

manifest into errors in the output portion of the task. The implementation of software fault

insertion allows faults to be generated in the output of Rate-4 application tasks. The occurrence

of a fault is specified to a particular Rate-4 frame, but not to the time within the frame.

Furthermore, faults may only occur in Rate-4 application tasks and not within the dispatcher or

lower rate tasks. This limits the insertion time of the faults to specific tasks. However, the

error detection mechanism for FTMP cannot distinguish the insertion time to specific tasks.

3.3.3 Duration of Faults

Faults can be transient soft, due to a temporary random environmental condition or

permanent hard, due to a physical change in the hardware. The software fault insertion

environment generates transient faults, and to emulate permanent faults, a transient fault is

repeatedly inserted in consecutive Rate-4 frames. This gives the appearance of a permanent

faults when view from the error detection and identification mechanisms.

3.3.4 Workload

* A system's workload is its set of inputs received from its environment; a desirable feature

within any computer evaluation environment is a controllable workload. [Feather et al.

851 developed a synthetic workload 2 generator for FTMP which was modified to include software

fault insertion. The synthetic workload provides a means of specificing the following factors:

o System Configuration which defines the number of processor triads and spares.
o Number of Tasks for each rate group, and the inclusion of the system tasks, such as

SCC and Status Display.

2)"A synthetic workload exercises a computer system by modeling its natural workload with generic
inputs and tasks.

II r i"i. iNilli

Implementation 13

. Workload for each task, which includes the amount of 1,0 and computations per
task.

3.3.5 Recovery Mechanism

In order to repeat the fault insertion experiment in gathering a large data base, a recovery

mechanism must augment the software fault insertion environment. Draper Labs modified the

system configuration controller to repair and activate processor 3 before fault insertion. 3 This

" . repair code was modified allowing for the repair and activation of the last unit failed (processor.

memory, or bus), before each fault insertion.

3.4 Experimental Environment

The experimental environment for software fault insertion can be divided into three

sections: the experimental set-up, the collection of data, and the analysis of data. This section

describes these areas on the FTMP implementation.

3.4.1 Parameters

The first phase of the experimental procedure is experimental setup and selection of

parameters. A program queries the user on the selection of the parameters, and from the inputs,

generates a command file which properly configures FTMP and collects data. The controllable

parameter include:

, Workload: The system workload includes the amount and distribution of tasks
between the rate groups, the amount of 1/O and computation executed by each task.
the inclusion of system tasks, and the overall system configuration.

* Location: The different locations for fault insertions are described in Section 3.3.1.

* Timing: The time of fault insertion is controlled by the Rate-4 frame, hence a 40
millisecond resolution.

o Duration: Either a transient (single) fault or a permanent (repeated) fault may be
inserted, as described in Section 3.3.3.

* Data Collected: The data which may be collected includes: the application tasks'
execution time; the fault insertion, detection, identification, and reconfiguration time;
the identification of the failed unit; and the reason code for the failure.

3 Draper's hardware fault insertion system allowed faults to be inserted in processor 3. hence Draper's
software checked status and activated processor 3 before inserting faults.

'r

04

14 Implementation

3.4.2 Experimental Execution

The second phase of the experimental procedure is insertion of faults and the collection of

the data. During each experimental loop the following actions occur:

1. The system repairs any module which failed during the last cycle.
- 2 The fault inserter is started and the workload data collection cycle begins. Workload

A- data (task execution time) is collected for one Rate-i frame, and the inserted faults

trigger the fault-handling mechanisms whose execution times are also collected.
3. The requested data is uploaded to the host and the cycle repeated.

3.4.3 Data Analysis

The third phase of the experimental procedure is data analysis. The data analysis program

takes the absolute timer values collected from FTMP and records differences between two events

as requested by the user. The average, standard deviation, minimum, maximum, and a

histogram of the data is then printed.

.0

4

I

Experiments

4. Experiments

With Software Fault Insertion implemented, the next step was to run experiments

evaluating the abilities of the environment. The experiments exercised most of the parameters

available in the software fault insertion environment. In particular the location of the fault,

time of insertion, and system configuration were the primary parameters varied. The data

collected from these experiments involve a measurement of the system workload, and the times

of fault insertion, fault detection, fault identification, and fault recovery. Additionally, the unit

which failed and the reason code for the failure were stored for analysis of missed diagnosed

faults. This section details the experiments performed. Comparisons to hardware fault insertion

results Draper 83a are made where appropriate.

4.1 Summary of Draper's Fault Insertion Data

l)raper under contract to NASA completed extensive hardware fault insertion experiments

at the pin (gate) level Draper 83al. This section summarizes their experiments and presents a

comparison between Draper's hardware fault insertion and the software fault insertion

experiments.

Draper's experiments inserted faults at the pin level of the processor: the faults were single

bit stuck-at zero, one, or inverted. The data is divided by the fault location, where the locations

P are cards in the LRU's. " For each card, several chips were pulled and faults inserted on each of

the chips. For our comparison data from four different card was taken: the CPU data path card

(CPUD); the CPU control path card (CPUC); the bus interface transmit card (BIT); and the

cache controller card (CC). These correspond to the software fault insertion locations of data

path, control path, transmit bus, and data path respectively; Figure 4-1 diagrams a possible

mapping between hardware and software inserted faults.

The parameters for Draper's data was many times unspecific and for the purpose of

comparison to the software inserted faults some assumption were made:

e The time of fault insertion was random for Draper's data, whereas with the software
fault insertion, the insertion time was specified to the output portion of a Rate-4
task.

1An LRU is a Line Replaceable Unit, each identical Ad containing a processor, memory and the

necessary bus interface circuitry.

1t Experiments

" The system workload was unknown, but we will assume a light workload with the
Rate-4 frame size at 40 milliseconds for Draper's data. The workload for the
software insertion was one Rate--I task, one Rate-3 (timer) task, and three Rate-I
tasks (display, SCC, and readall), and the Rate--4 frame size was stretched to 50
milliseconds; hence the Rate-i frame size was 400 milliseconds. The difference in
frame sizes for the two insertion methods should increase the time measurements for
the software inserted faults, approximately 25%, in comparison to the hardware fault
insertion measurements.

" The system configuration for Draper's data was unknown, a reasonable assumption is
three triads executing with either zero or one spare processor. The software data
lists the configuration either as two or three triads without spare, or two triads with

,p spare.

Draper's Hardware Possible Fault Software Fault Insertion
Fault Injection Location Manifestations Comparison Location

CPU Data Path Card Bad Data from Processor Data Path
No Data from Processor Control Path4

CPU Control Path Card Processor Hangs Control Path
No Data from Processor Control Path
Bad Data from Processor Data Path

Cache Controller Card Processor Hangs Control Path
No Data from Processor Control Path
Bad Data from Processor Data Path

Bus Interface: T-Bus Card Bad Data on Bus T-Bus
No Data on Bus T-Bus

Figure 4-1: Possible Fault Mappinig Between Hardware and Software Inserted
Faults

4.2 Fault Detection Time

Fault detection time is the time from the insertion of a fault until an error is detected by

the system. For software inserted fault, the insertion time is at the end of a specified frame.

whereas with Draper's hardware inserted faults, the insertion times are any point within the

frame. E[rror detection, reading of the error latches, is done by SCC at Rate-l. Hence the

detection time for software inserted faults should be a maximum of one Rate-i frame (-400

milliseconds), the latency in reading the error latches. For hardware inserted faults the detection

time will include the manifestation of the fault into an error, along with the delay in reading the

error latch.

~~T

Experiments 17

In predicting the detection time for software inserted faults, the parameters affecting the

detection time are:

" Workload: A large workload stretches the frame size, placing the detection point
later in the frame. Likewise, a large workload limits the execution time per Rate-4
frame of the lower rate tasks (e.g. error detection). The workload function is
expressed by R4task, the Rate-4 task size, and R-lFrsize, the Rate-4 frame size.
both measured in milliseconds.

" Time of error detection: The point which error detection occurs within the realtime
cycle affects the latency from the time of fault insertion. This is determined by the
amount of time which the lower rate task executes before the error detection routine
is run. This time is represented as LDet and measured in milliseconds.

" Time of Insertion: The of point of fault insertion within the realtime cycle in
conjunction with the time of error detection governs the fault detection latency. The
time of insertion is represented as Tin and measured in Rate-4 frames.

Finally let: LxTime be defined as the amount of time which the lower rate tasks execute per

frame, where LxTime=max (R4FrmSize-R4Task,1O) milliseconds, where 10 millisecond is

the amount of time the dispatcher will allow for the execution of lower rate tasks. The detection

time can be represented by:

LDet
DetTime = R4FrmSize X [[-Tin] mod 8] (4.1)

xTme
The quotient in Equation (4.1) marks the Rate-4 frame which the error detection task in run: the

modulo 8 term comes from the realtime cycle of FTMP (eight Rate-4 frames per Rate-1 frames).

Equation (4.1) is plotted in Figure 4-2 as detection time versus frame of insertion for

different workloads; two experimental runs are also plotted. The high workload data has a

Rate-4 frame size of 50 milliseconds and the low workload data a 40 millisecond frame size. In

comparing the data of Figure 4-2, the experimental data corresponds closely to the computed

data. The reason for the multiple data points for each insertion time is that error detection can
be accelerated or delayed one Rate-4 frame. The increase in the slope as the workload increases

0is due the lengthening of the basic frame size hence placing the error detection a further time

away from the fault insertion.

a.

Figure 4-3 shows histograms for the fault detection time with the time of fault insertion

varying between graphs. The fault location is the data path, but this data is representative of

the other fault locations. The time skewing between the graphs show the lengthening of the

detection time as the fault insertion time moves relative to the fixed detection time. Figure 4-4

shows histograms of fault detection time for Draper's hardware fault inserted data. The

0

_ . , P * P -* U~- .

18 Experiments

L.'W.% 500-

* Experimental High Workload

o Experimental Low Workload

400 -Equation (1), High Workload

- - Equation (1), Low Workload

~300-
Detection Time 3I0

DetTi me "
(milliseconds)

200 -'C

* '
... '

100

.---.

0 0 2 4 6 0 2

Fault Insertion Time, Tin
(Frame Number)

Figure 4-2: Error Detection Time as a Function of Insertion Time

detection time is approximately two times larger than the software inserted faults. The

difference is due to the manifestation of faults to errors, whereas with software inserted faults

the detection time is only the latency between inserting the fault and reading the error latches.

Another difference between the two data sets is the distribution of the data: the software
inserted faults fall into two or three groups, while the hardware inserted faults are distributed

across the whole range. The random insertion time of Draper's faults and the delay in fault

manifestation attribute to the continuous distribution of the data.

%"

From the fault detection time measurements, we were able to show the parameters affecting

0 the fault detection time. Furthermore we were able to characterize the processes from the error

occurrence (error latch set) to the error detection (error latch read), but could not map from a

fault occurrence to an error occurrence (Figure 2-1).

4.3 Fault Identification Time

The fault identification tim- is the time from the detection of an error by the system until

the source of the error is identified. For both software and hardware inserted faults the expected

data should be similar; the mechanisms involved are the same (Section 2.3).

l,

Experiments 19

I fult Detection 71rn

30 Fault inserted in Frm

Percent 25 -80 0ol"w

Frequency 20

of Occurence 10

10

30 F ul Inserted In Rine 425 13 points
Percent 25 |

Frequency 20
of Occurence 10

"..5 5-4 k
"<0 1- -

3 I Fult DelecUonnri

30 Fsuf Inserted In Fram a

Percent 25 -- - 00111
20

Frequency 15 -

of Occurence 10_ -lI

0 L
* ' uFU Detecton MTI

30 &Wlt Inserted In ioue 0

Percent 25 - p |
Frequency 20

15 -of Occurence 10 t
5.- 0 Nil I

F 0 100 200 300 400 500
! Time (milliseconds)

Figure 4-3: Fault Detection Time for Software Inserted Faults

The primary parameter affecting the data is the manifestation of the fault; if a fault

manifests to errors on different buses then the possible sources of the fault is limited. A

* secondary parameter is the number of possible sources for the error. This is dependent on

system configuration: the more processors, the more sources of errors. The experiments varied

the fault locations (manifestation), and the system configuration (possible sources).

* The data should be grouped according to the execution time of the identification routine.

which is dependent on the number of suspect units. The routine runs as a Rate-I task, once per

400 milliseconds, with the data grouped according to the number of passes.

Figure 4-5 shows histograms of fault identification times for the software inserted faults.

4I

- . .- ,7-T.. -

300

V vbI["ql" 'il tion 'M lr
..l . 30 - ardlwae F" Iult Injection

30
Hi"

"e-

Percent 2 -DCr.~U. 20-Frequency 15 -
of Occurence 10

5t
,-... 0

3.Failt Detection MTrme, .-. +30 -- I' -Hardware Fa3ult InjeOtion

Percent 25 _.;c Card. 4781 points

Frequency,- o "-15 -,
of Occurence 10-'

5
0

Fault Deiection 'irrr30 - Hardware Fault Injection

Percent 25 - CC Card. &s points

20 -
Frequency")". " 15 -

of Occurence 10 -

5-
01

_0 100 200 300 400 500 600 700 800 900 1000 1100

Fault Deection 'Tnn

50 - Hardware Fault Injection
Percent 40 -- ITCard. 2140pot

Frequency 30
of Occurence 20

10
0 -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Time (milliseconds)

Figure 4-4: Draper's Hardware Inserted Fault Detection Time

The main feature of the data is the discrete distribution. This was expected; the distribution is

in multiples of the Rate-1 frame size, approximately 400 millisecond. Thus Figure 4-5 also shows

SW the number of execution cycles required for the identification routines.

Of interest is the control path fault with two triads executing; the identification time is

under 50 milliseconds, hence the source was located without reconfiguring the system. The

reason for this is as follows: the control path fault sends one processor of the triad into an

infinite loop. As the other processors continue execution they will transmit on both the poll bus

and the transmit bus causing errors to occur on each. These two errors are sufficient to

determine the source and hence the faulty unit is identified without further information.

At the other extreme is the transmit bus fault with three triads executing. Here the number

0I

Lx per i me it s 21

F-Wit 11elnrwaLI n 11n~

Percent 473 p ints1d~w~ou pr

Fr e qu ten cN 0

of Occurence 10
0 - . _j , II

30 DP- uelNd wihSe

Pe rce nt 20 9 points

Frequency 2

of Occurence 10 -

0-A

30 - Fault identinlon Ti7me
Perce- DP Fault3 Trias without Spare

Fr ciiu en tcv 0
of Occurence 10

30 __ _PFut__ lt~sWLuu pr

Percent 40 -- points

Frequency 30-
of Occurence 20-

10-
0-

50 - 1 Faeuflt a asLbo Spre
Percent 40- WQpit

Frequency 30 -

of Occurence 2
10
0

30 - Fault, !denthllon Timer

Percent 244 points wthu S)~

Frequency 20-
of Occurence 10 -

0

Fault Identiflato flr
Pcnt 30 - lnus Faunt 2 Triads without Spare

Frequency 20
of Occurence 10o

3n Fault ld~nt iion- Tfie
30 - Mus F2u]LQ Thid I&Wl t Spare

o Frequency 2
of Occurence 10-

0

Futidentification limfe
-330 -. ~ Fault 3 Tyj ids without SparePercent 3M oiti

Frequency 20
of Occurence 10

0 I

200 4100 600 800 1000

Time (milliseconds)

Figure 4-5: Fault Identification Trime for Software Inserted Fauilts

-f .A.-. 1

22 Experiments

of error sources is four, the bus and the throe processors enabled on the bus. This should require

a minimum of two bus swaps to determine the source of the error. In this example three bus

swaps were required. This is due to an error in the identification routine which does not swap

buses on all triads.5

90 -Fault Idemnition 'flne
Hardware ,'.ault Injection

Percent 70 CGT D Card, 7200 points

Frequency 50 - 7
of Occurence 30 -]

22182
90 -Fault Iden tlflcation ffr

Hardware Fault Injection

Percent 70 cFJC Cad. 4781 poiftS

Frequency 50
of Occurence 30 -4

,18-1 I

* 90 Fault Identincation rIne
Hardware Fault Injection

Percent 70 CC Card, 3W5 pointB

Frequency 50 -
of Occurence 30 -

10 -

90 - Fault Identification TinHardware Fault InjectionPercent 70 -- _BITCd, 214 point8

Frequency 50
• of Occurence 30

1811 I F==
0 100 200 300 400 500 600 700 800 900 1000 1100

Time (milliseconds)

Figure 4-6: Draper's Fault Identification Time

.' Figure 4-6 presents histograms of Draper's data for fault identification times for the four

different cards in the comparison. The major difference between Draper's data and the software

inserted fault data is that a significant amount of Draper's data points lie in the first bin, 0 to

100 milliseconds, with fewer outliers at the Rate-1 frame size, 320 milliseconds. As stated earlier

the error identification time is a function of the number of suspect units to which the errors can

.5
SThis error was further evident in the observations of the transient fault routines conducted during

preliminary experiments with Software Fault Insertion.

-p;
.5

0 . . . '

Experiments 2:1

be attributed. From analysis of Draper's data, the hardware inserted faults manifest to errors on

multiple buses which can only be attributed to a single unit.

From the data, the fault identification behavior was characterized. Draper's data had

-, mostly multiple errors, whereas the software inserted faults allowed evaluation under single

detected errors. This shows software implemented fault insertion can be a tool for the

evaluation and characterization of fault-handling routines.

4.4 Fault Recovery Time

The fault recovery time is the time from the identification of a faulty unit to the time when

the unit is removed from the active system. The data for software inserted faults should be

similar to Draper's hardware inserted faults. The primary parameter is the system

configuration, the presense or absence of spares. The expected data should showv an increase in

recovery time when spares are not available.

, .', Figure -1-7 shows histograms of fault recover times under various system configurations and

fault locations. With the data path and control path faults, the unit failed was a processor and

hence the processor was; retired: for the transmit bus fault a bus was marked faulty and replace.

The data shows the expected increase in recovery time when no spares are available, further

more the data is grouped at -15 and 95 millisecond. This represents the period of the dispatcher

which executes the reconfiguration commands.

Figure 4-8 shows Draper's fault recovery data. Their data is similar to the sunm of the

software inserted fault data. Draper's data lacks the resolution and specification of experimental

condition for useful comparisons, but from the two data sets, it is evident software imlplenmented

fault insertion can be used to characterize and evaluate the fault recovery procedure of a system

-7.-

4

'a-,

2- FN l I cII elts

Percent 5- DP Fault 2 Trtads without SpareraP, 473 points

Frequency 10
of Occurence 5

4. 0

Fault Reconflguraton Tine

Percent 15 DP Fault 2 -Tads with Spare
= 449 points

Frequency 10 -
of Occurence 5

0
Fault Reconrlguration Tim

Percent 15 -- DP Fault 3 T'ads without Spare
. 46,5 points

Frequency 10-4

of Occurence 5

Fault Reconfiguration 1Tin

Percent 15 -P Fault 2 'Mads without Spare

Frequency 10
W point

of Occurence 5

0

IFault Reconfgura-tion Tine

Percent 15 -ci Fault 2 Trns with Spare
r'. 1so points

Frequency 10 60pit

of Occurence 5

Fault Reconfiguration nTrr
Percent 15 - Ci' Fault 3 riiads without Spare

! 247 poinia

Frequency
10

2

of Occurence 5 -

Fault Reconfiguration "rme

Percent 15 "Mus Fault 2 T'ads without Spare
ms o ints

Frequency 10 1
of Occurence 5

Fault Reconflguratlon Tntf
Pe tre nt 15 T us Fault 2 "IMads with Spare

315 poinmF' r-,liien,- 10

J (),'irence 5 i

FaUt Reconflguration Tint

P,rc , n 1 5 'Bus FaultS Tr ids without Spare

I- r.,iriv 10
O11 p'int

0 50 100 150 200 250

Time (milliseconds)

Figure 4-7: Fault Recovery Time for Software Inserted Faults

Experimnts 2

60 FaulIt Reconriguration Tn

Percent 50 -Hardware Fault Injection

40 -CU ad 28pit
Frequency 30(DCad726rit

of Occurence 20

-~ 10
0-

60 Fault Reconguration flrne

Pret 50 Hardware Fault Injection

Frequency 40aljCad471ont
30

of Occurence 20o

a-- 10
0-

* 60

Percent 50-HadaeF.lIncto
40 -CCCr,3Mpit

Frequency 30
of Occurence 2)0

10

0 60 Fault Reconfiguration 'flrn

Pecet 50 Hardware Fault Injection

40Frequency 30 -1BTCd.24oit
of Occurence 20-

10 - __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0-

0 50 100 .150 200 250

Time (milliseconds)

Figure 4-8: Draper's Fault Recovery Time

A

P rwwu?'rwrrryux K c'n w- w-wr q- ~- p.- 'r c t -. -- -. -

26 E x peru neii t s

-4

.4

4%

.4

4%

.1

I

4
U'

'1

Conclusions 27

.1* 5. Conclusions

This paper presented a model for software implemented fault insertion and implemented the

model on a fault tolerant computer, FTMP. Experiments were conducted and from the lata the

following information was gathered about FTMP:

>" * Measured Detection Times: are a function of workload, and time of insertion.
1" •Measured Identification Times: are a function of configuration and type of faults

inserted. Errors in the identification code were uncovered by observing system
response.

o Measured Recovery Times: are a function of the system configuration.

In comparison to hardware fault insertion the following points can be made regarding the

two fault insertion schemes:

o Both fault insertion schemes were able to characterize the fault identification and
reconfiguration times of the system.

e Hardware fault insertion places the fault at a lower level (pin level) than the software
insertion (processor level). For this reason the detection times for the hardware
inserted faults included the fault latency times, whereas software fault insertion only
included the error detection latency, Figure 2-1.

* The fault manifestation and propagation for hardware inserted faults allows less
control in the generation of specific error types than the software inserted faults.
This control may be useful during the evaluating of specific fault identification

-. routines.

-0'.: In summary, although software implemented fault insertion does not fully" emulate hardware

fault insertion, it provides a means to evaluate the fault detection, identification, and recovery

means of a system. The software fault insertion can also be used to in the characterization the
systems across architectural and implementation boundaries. Furthermore, as the controllability

and observability of processors decrease due to the increased used of VLSI technology, software

implemented fault insertion may be a reasonable approach to system evaluation.

-OU

aD

28

'p

.1
a'

'4

C,

l~cleenc,,29

References

Boone et al. 0' L A. Boone. ILL. Liebergot. and RA,. Sedmak.
\vailability, Reliability, and Maintainability Aspects of the Sperry INIV.('

1100,60.
In FT('S-IO, pages 3-9. IEEE, June, 1980.

Draper 83ai Development and Evaiuation of a Fault-Tolerant .\Iultiprocessor Computer.
Vol. lI, FT.1IP Test and Evaluation

, Charles Stark Draper Laboratories, 1983.
NASA Contract Report 166073.

Draper 83b; Development and Evaluation of a Fault-Tolerant Vultiprocessor Computer.
Vol. I, FT.\IP Principles of Operations
Charles Stark Draper Laboratories, 1983.
NASA Contract Report 166071.

Draper 83c Development and Evaluation of a Fault-Tolerant .\[ultiprocessor Computer.
Vol. II, FT.\IP Software
Charles Stark Draper Laboratories, 1983.
NASA Contract Report 166072.

'Feather et al 85;
Frank Feather, Daniel Siewiorek, and Zarv Segall.
Validation of a Fault-Tolerant Multiprocessor: Baseline Experiments and

Workload Implementation.
Technical Report CMU-CS-85-145, Carnegie Mellon University, July, 1985.

-Hopkins et al. 781
A.L. Hopkins, T.B. Smith, and J.H. Lala.
FTMP - A Highly Reliable Multiprocessor.
In Proceeding of the IEEE, pages 1221-1237. October, 1978.

(NASA 79a) NASA-Langley Research Center.
Validation Methods for Fault-Tolerant Avionics and Control Systems -

Working Group Meeting I, NASA-Langley Research Center. 1979.
NASA Conference Publication 211-1.

. (NASA 79b) Research Triangle Institute.

Validation Alethods for Fault-Tolerant Avionics and Control Systems -
Working Group Meeting II, NASA-Langley Research Center, 1979.

NASA Conference Publication 2130.

Schuette, et al. 861
M.A. Schuette, J.P. Shen, D.P. Siewiorek, and Y.X. Zhu.
Experimental Evaluation of Two Concurrent Error Detection Approaches.
In FTC.S-16, pages 138-143. IEEE, July, 1986.

@4

Sicw orek and Swarz 82:
Daniel P. Siewiorek and Robert S. Swarz.
The 7Teory and Practice of Reliable System Design.
Digital Press. 1982.

Yang et al. 8,5 X.Z Yang, G. York, WV.P. Birmingham, and D.P. Siewiorek.
Fault Recovery of Triplicated Software on the Intel iAPX -1:32.
In Distributed Computing Systems, pages 438-4-13. -May, 1985.

his,

1

e
J

U.'

4

U.'

'U

*
-U,

'p.

-U-

U~U. /
Os

U..

"I.

eje- S~S S S S S S S S U .0 9 -, WL'V~.

